Vehicle Dynamics and Simulation Engine Modelling

Dr B Mason

Mean value model creation

• System representation (naturally aspirated/gasoline)

Note: Boosted engines will also have wastegate position / duty cycle

iversitv

Mean value engine model

- Origin of air flow is induction into cylinder.
- Airflow is throttled.
- Volumetric flow is given;

$$\dot{V} = V_{disp} \frac{N_{eng}}{120}$$

• Mass flow (speed density equation);

$$\dot{m} = \frac{P_{man}}{RT_{man}} \frac{V_{disp}}{120} N_{eng}$$

University

here!

Mean value engine model – volumetric efficiency

• Volumetric efficiency, η

$$\dot{m} = \eta \frac{P_{man}}{RT_{man}} \frac{V_{disp}}{120} N_{eng}$$

- Modifies the speed density equation
- Depends on;
 - Intake and exhaust geometry
 - Intake and exhaust manifold pressure
 - Engine speed
 - Valve timing
 - Acoustic and inertial air effects
 - etc
- Perhaps the most important parameter in all of the mean value models!

Max is ≈ 1 for Naturally aspirated

Throttle

.

• Can be modelled as Laval nozzle of variable throat area (projected cross sectional area).

For
$$\frac{P_{man}}{P_{atm}} > 0.528$$
 mass flow depends on P_{atm} and P_{man} ;
 $\dot{m} = \frac{C_d A_{th} P_{atm}}{\sqrt{RT_{atm}}} \left(\frac{P_{man}}{P_{atm}}\right)^{\frac{1}{\gamma}} \left\{\frac{2\gamma}{\gamma - 1} \left[1 - \left(\frac{P_{man}}{P_{atm}}\right)^{\frac{\gamma - 1}{\gamma}}\right]\right\}^{\frac{1}{2}}$

• For $\frac{P_{man}}{P_{atm}} \leq 0.528$ flow depends on P_{atm} alone (sonic/choked flow); $\dot{m} = \frac{C_d A_{th} P_{atm}}{\sqrt{RT_{atm}}} \sqrt{\gamma} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{2(\gamma-1)}}$ Throttle Plate P_{atm} Laval Nozzle

• At max throat flow velocity;

$$\frac{P_{man}}{P_{atm}} = \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}$$

P_{man}

T_{man}

Throttle

• Throttle effective area

$$A_{th} = \frac{\pi D^2}{4} \left\{ \left(1 - \frac{\cos\theta}{\cos\theta_0} \right) + \frac{2}{\pi} \left[\frac{a}{\cos\theta} \left(\cos^2\theta - a^2 \cos^2\theta_0 \right)^{\frac{1}{2}} - \frac{\cos\theta}{\cos\theta_0} \sin^{-1} \left(\frac{a\cos\theta_0}{\cos\theta} \right) - a(1 - a^2)^{\frac{1}{2}} + \sin^{-1}a \right] \right\}$$

- Where $a = \frac{d}{D}$
- Throttle max occurs when $\theta_{max} = \cos^{-1}(a\cos\theta_0)$
- So that at θ_{max}

 $A_{th} \approx \frac{\pi D^2}{4} - dD$

Throttle

- Model is valid for frictionless, adiabatic flow through smoothly convergent-divergent nozzle only!
- Discharge coefficient, C_d is used to 'correct' for reality i.e.
- C_d is not constant it depends on;
 - Throttle position, α
 - Throttle pressure ratio, $\frac{P}{P_{amb}}$
- In reality this tends to be mapped for a specific throttle using a flow bench

Intake manifold

- Can be represented as open system of constant volume.
- System stores mass and energy, represented by state variables P and T.
- Mass balance;

$$\frac{dm}{dt} = \dot{m}_{in} - \dot{m}_{out} \tag{1}$$

• Energy balance;

$$\frac{dE}{dt} = \dot{m}_{in} h_{0_{in}} - \dot{m}_{out} h_{0_{out}} + \dot{Q}$$
(2)

• Where; $h_0 = C_p T + \frac{u^2}{2}$

And the energy within the volume is;

$$E = mc_{v}T + \frac{mu^{2}}{2} + mgz$$

Intake manifold

- Making some assumptions
 - GPE change is 0
 - KE change is 0
- So that; $E = mc_v T + \frac{mu^2}{2} + mgz$ $h_0 = C_p T + \frac{u^2}{2} = C_p T$ (3)
- Taking the derivative of $E = mc_v T$ wrt to t;

$$\frac{dE}{dt} = c_{\nu}T\frac{dm}{dt} + c_{\nu}m\frac{dT}{dt}$$
(4)

• And by substituting 1, 3, 4 into 2;

$$c_{v}T(\dot{m}_{in} - \dot{m}_{out}) + c_{v}m\frac{dT}{dt} = \dot{m}_{in}C_{p}T_{in} - \dot{m}_{out}c_{p}T_{out} + \dot{Q}$$
(5)

Intake manifold

• We can now couple the energy and mass balances using the ideal gas law;

$$m = \frac{PV}{RT}$$
(6)
• Taking the derivative wrt to t;
$$\frac{dm}{dt} = \frac{V}{PT} \frac{dP}{dt} - \frac{PV}{PT^2} \frac{dT}{dt}$$
(7)

$$\frac{dm}{dt} = \frac{V}{RT}\frac{dP}{dt} - \frac{PV}{RT^2}\frac{dT}{dt}$$

dt

dt

• Substituting (1, 6 and 7 into 5) and assuming
$$T_{out} = T$$
;

$$\frac{dT}{dt} = \left[c_p \dot{m}_{in} T_{in} - c_p \dot{m}_{out} T - c_v T \dot{m}_{in} + \frac{dQ}{dt}\right] \frac{RT}{c_v PV}$$
(8)
$$\frac{dP}{dt} = \left[c_p \dot{m}_{in} T_{in} - c_p \dot{m}_{out} T + \frac{dQ}{dt}\right] \frac{R}{c_v V}$$
(9)
$$\frac{dQ}{dt} = hA_{wall} (T_{wall} - T)$$
(7)

University

And;

Torque model

- Torque produced is a function of;
 - Spark advance
 - Inducted air mass flow
 - AFR
- Data is usually obtained experimentally and incorporated within a regression model.
- Friction torque is deducted (imep bmep) to establish output torque.
- Fmep [bar] is calculated;

$$fmep = 0.97 + 0.15 \left(\frac{N}{1000}\right) + 0.05 \left(\frac{N}{1000}\right)^2$$

• And;

$$T_f = \frac{fmepV_{sw}}{4\pi} = \frac{\left[0.97 + 0.15\left(\frac{N}{1000}\right) + 0.05\left(\frac{N}{1000}\right)^2\right]V_{sw}}{4\pi}$$

Parameterisation effort

- Model has 5 unknown parameters, C_d , η_{vol} , h, V and V_{disp} .
- With $\eta_{vol} = f(P, T, N, IVO, EVC)$
- η_{vol} is obtained by experiment at some *P*, *T*, *N*, *IVO*, *EVC*. Recall;

$$\eta = \frac{120 \dot{m}_{actual}}{\rho V_{disp} N_{eng}}$$

- C_d is also experimentally obtained (usually on flow rigs)
- Obtaining h in reality is very difficult and this is normally one of the tuned parameters.
- V and V_{disp} are obtained relatively easily but can also be used to tune the model response to match reality.

Other considerations

- Adding a turbocharger complicates matters significantly and introduces a causality loop.
 - The loop is normally broken by a delay (not physically correct).
- Heat transfer from the exhaust manifold has a significant effect on the turbo performance.
- Errors in the 'turbo loop' are accumulated within the loop.
- Each additional volume adds two model states (T and P) increasing significantly the computational burden.
- Volumes of very different sizes result in stiff models i.e. slow and fast dynamics.

Engine Timing Model with Closed-Loop Control

Copyright 1990-2012 The Math Works, Inc.

Intake Manifold

Torque Generation

